Coverage for local_installation/dynasor/post_processing/neutron_scattering_lengths.py: 100%
56 statements
« prev ^ index » next coverage.py v7.3.2, created at 2025-04-16 06:13 +0000
« prev ^ index » next coverage.py v7.3.2, created at 2025-04-16 06:13 +0000
1import json
2from importlib.resources import files
3from typing import Dict, List
5import numpy as np
6from pandas import DataFrame
7from .weights import Weights
10class NeutronScatteringLengths(Weights):
11 """This class provides sample weights corresponding to neutron scattering lengths.
12 By default, the coherent and incoherent scattering lengths are weighted by the natural
13 abundance of each isotope of the considered atomic species.
14 This weighting can be overwritten using the :attr:`abundances` argument.
16 The scattering lengths have been extracted from `this NIST
17 database <https://www.ncnr.nist.gov/resources/n-lengths/list.html>`__,
18 which in turn have been taken from Table 1 of Neutron News **3**, 26 (1992);
19 `doi: 10.1080/10448639208218770 <https://doi.org/10.1080/10448639208218770>`_.
21 Parameters
22 ----------
23 atom_types
24 List of atomic species for which to retrieve scattering lengths.
25 abundances
26 Dict of the desired fractional abundance of each isotope for
27 each species in the sample. For example, to use an equal
28 weighting of all isotopes of oxygen, one can write
29 ``abundances['O'] = dict(16=1/3, 17=1/3, 18=1/3)``. Note that
30 the abundance for any isotopes that are *not* included in this
31 dict is automatically set to zero. In other words, you need to
32 ensure that the abundances provided sum up to 1. By default
33 the neutron scattering lengths are weighted proportionally to
34 the natural abundance of each isotope.
35 """
37 def __init__(
38 self,
39 atom_types: List[str],
40 abundances: Dict[str, Dict[int, float]] = None,
41 ):
42 scat_lengths = _read_scattering_lengths()
44 # Sub select only the relevant species
45 scat_lengths = scat_lengths[scat_lengths.species.isin(atom_types)].reset_index()
47 # Update the abundances if another weighting is desired
48 if abundances is not None:
49 for species in abundances:
50 scat_lengths.loc[scat_lengths.species == species, 'abundance'] = 0
51 for Z, frac in abundances[species].items():
52 match = (scat_lengths.species == species) & (scat_lengths.isotope == Z)
53 if not np.any(match): # Check if any row+column matches
54 raise ValueError(f'No match in database for {species} and isotope {Z}')
55 scat_lengths.loc[match, 'abundance'] = frac
57 self._scattering_lengths = scat_lengths
59 # Check if any of the fetched scattering lengths is None,
60 # indicating that it is missing in the experimental database.
61 # Only raise an error if the desired abundance is greater than 0.
62 nan_rows = scat_lengths[scat_lengths.isnull().any(axis=1) & (scat_lengths.abundance > 0.0)]
63 if not nan_rows.empty:
64 # Grab first offending entry
65 row = nan_rows.iloc[0]
66 raise ValueError(f'Non-zero abundance of {row.isotope}{row.species}'
67 ' with missing tabulated scattering length.')
69 # Make sure abundances add up to 100%
70 by_species = self._scattering_lengths.groupby('species')
71 for species, species_df in by_species:
72 if not np.isclose(species_df.abundance.sum(), 1):
73 raise ValueError(f'Abundance values for {species} do not sum up to 1.0')
75 # Compute scattering lengths weighted by abundance
76 weights_coh = by_species.apply(
77 lambda s: (s.b_coh * s.abundance).sum(),
78 include_groups=False
79 ).to_dict()
80 # First compute the average scattering length, then take the square
81 # since the incoherent scattering lengths enter as b_incoh**2, but
82 # dynasor only applies a single weighting factor w_incoh.
83 weights_inc = by_species.apply(
84 lambda s: (s.b_inc * s.abundance).sum(),
85 include_groups=False
86 ).to_dict()
88 supports_currents = False
89 super().__init__(weights_coh, weights_inc, supports_currents)
91 @property
92 def abundances(self) -> Dict[str, Dict[int, float]]:
93 abundance_dict = {}
94 for (species), species_df in self._scattering_lengths.groupby('species'):
95 abundance_dict[species] = {}
96 for (isotope, abundance), _ in species_df.groupby(['isotope', 'abundance']):
97 abundance_dict[species][isotope] = abundance
98 return abundance_dict
101def _read_scattering_lengths() -> DataFrame:
102 """
103 Extracts the scattering lengths from the file `neutron_scattering_lengths.json`
104 for each of the supplied species. Scattering lengths are in units of fm.
106 The scattering lengths have been extracted from the following NIST
107 database: https://www.ncnr.nist.gov/resources/n-lengths/list.html,
108 which in turn have been extracted from
109 Neutron News **3**, No. 3***, 26 (1992).
110 """
111 data_file = files(__package__) / 'form-factors/neutron_scattering_lengths.json'
112 with open(data_file) as fp:
113 scattering_lengths = json.load(fp)
115 data = []
116 for species in scattering_lengths:
117 for isotope in scattering_lengths[species]:
118 for fld in 'b_coh b_inc'.split():
119 val = scattering_lengths[species][isotope][fld]
120 if 'None' in val:
121 scattering_lengths[species][isotope][fld] = np.nan
122 elif 'j' in val:
123 scattering_lengths[species][isotope][fld] = complex(val)
124 else:
125 scattering_lengths[species][isotope][fld] = float(val)
126 data.append(
127 dict(
128 species=species,
129 isotope=int(isotope),
130 abundance=float(scattering_lengths[species][isotope]['abundance'])
131 / 100, # % -> fraction
132 b_coh=complex(scattering_lengths[species][isotope]['b_coh']),
133 b_inc=complex(scattering_lengths[species][isotope]['b_inc']),
134 )
135 )
136 scattering_lengths = DataFrame.from_dict(data)
137 return scattering_lengths