Coverage for local_installation/dynasor/post_processing/neutron_scattering_lengths.py: 100%
56 statements
« prev ^ index » next coverage.py v7.3.2, created at 2024-12-21 12:02 +0000
« prev ^ index » next coverage.py v7.3.2, created at 2024-12-21 12:02 +0000
1import json
2from importlib.resources import files
3from typing import Dict, List
5import numpy as np
6from pandas import DataFrame
7from .weights import Weights
10class NeutronScatteringLengths(Weights):
11 """This class provides sample weights corresponding to neutron scattering lengths.
12 By default, the coherent and incoherent scattering lengths are weighted by the natural
13 abundance of each isotope of the considered atomic species.
14 This weighting can be overwritten using the :attr:`abundances` argument.
16 The scattering lengths have been extracted from `this NIST
17 database <https://www.ncnr.nist.gov/resources/n-lengths/list.html>`__,
18 which in turn have been taken from Table 1 of Neutron News **3**, 26 (1992);
19 `doi: 10.1080/10448639208218770 <https://doi.org/10.1080/10448639208218770>`_.
21 Parameters
22 ----------
23 atom_types
24 List of atomic species for which to retrieve scattering lengths.
25 abundances
26 Dict of the desired fractional abundance of each isotope for
27 each species in the sample. For example, to use an equal
28 weighting of all isotopes of oxygen, one can write
29 ``abundances['O'] = dict(16=1/3, 17=1/3, 18=1/3)``. Note that
30 the abundance for any isotopes that are *not* included in this
31 dict is automatically set to zero. In other words, you need to
32 ensure that the abundances provided sum up to 1. By default
33 the neutron scattering lengths are weighted proportionally to
34 the natural abundance of each isotope.
35 """
37 def __init__(
38 self,
39 atom_types: List[str],
40 abundances: Dict[str, Dict[int, float]] = None,
41 ):
42 scat_lengths = _read_scattering_lengths()
44 # Sub select only the relevant species
45 scat_lengths = scat_lengths[scat_lengths.species.isin(atom_types)].reset_index()
47 # Update the abundances if another weighting is desired
48 if abundances is not None:
49 for species in abundances:
50 scat_lengths.loc[scat_lengths.species == species, 'abundance'] = 0
51 for Z, frac in abundances[species].items():
52 match = (scat_lengths.species == species) & (scat_lengths.isotope == Z)
53 if not np.any(match): # Check if any row+column matches
54 raise ValueError(f'No match in database for {species} and isotope {Z}')
55 scat_lengths.loc[match, 'abundance'] = frac
57 self._scattering_lengths = scat_lengths
59 # Check if any of the fetched scattering lengths is None,
60 # indicating that it is missing in the experimental database.
61 # Only raise an error if the desired abundance is greater than 0.
62 nan_rows = scat_lengths[scat_lengths.isnull().any(axis=1) & (scat_lengths.abundance > 0.0)]
63 if not nan_rows.empty:
64 # Grab first offending entry
65 row = nan_rows.iloc[0]
66 raise ValueError(f'Non-zero abundance of {row.isotope}{row.species}'
67 ' with missing tabulated scattering length.')
69 # Make sure abundances add up to 100%
70 by_species = self._scattering_lengths.groupby('species')
71 for species, species_df in by_species:
72 if not np.isclose(species_df.abundance.sum(), 1):
73 raise ValueError(f'Abundance values for {species} do not sum up to 1.0')
75 # Compute scattering lengths weighted by abundance
76 weights_coh = by_species.apply(
77 lambda s: (s.b_coh * s.abundance)
78 .sum().real, # weights in dynasor can only be real atm
79 include_groups=False
80 ).to_dict()
81 # First compute the average scattering length, then take the square
82 # since the incoherent scattering lengths enter as b_incoh**2, but
83 # dynasor only applies a single weighting factor w_incoh.
84 weights_inc = by_species.apply(
85 lambda s: ((s.b_inc * s.abundance).sum()**2).real,
86 include_groups=False
87 ).to_dict()
89 supports_currents = False
90 super().__init__(weights_coh, weights_inc, supports_currents)
92 @property
93 def abundances(self) -> Dict[str, Dict[int, float]]:
94 abundance_dict = {}
95 for (species), species_df in self._scattering_lengths.groupby('species'):
96 abundance_dict[species] = {}
97 for (isotope, abundance), _ in species_df.groupby(['isotope', 'abundance']):
98 abundance_dict[species][isotope] = abundance
99 return abundance_dict
102def _read_scattering_lengths() -> DataFrame:
103 """
104 Extracts the scattering lengths from the file `neutron_scattering_lengths.json`
105 for each of the supplied species. Scattering lengths are in units of fm.
107 The scattering lengths have been extracted from the following NIST
108 database: https://www.ncnr.nist.gov/resources/n-lengths/list.html,
109 which in turn have been extracted from
110 Neutron News **3**, No. 3***, 26 (1992).
111 """
112 data_file = files(__package__) / 'neutron_scattering_lengths.json'
113 with open(data_file) as fp:
114 scattering_lengths = json.load(fp)
116 data = []
117 for species in scattering_lengths:
118 for isotope in scattering_lengths[species]:
119 for fld in 'b_c b_i'.split():
120 val = scattering_lengths[species][isotope][fld]
121 if 'None' in val:
122 scattering_lengths[species][isotope][fld] = np.nan
123 elif 'j' in val:
124 scattering_lengths[species][isotope][fld] = complex(val)
125 else:
126 scattering_lengths[species][isotope][fld] = float(val)
127 data.append(
128 dict(
129 species=species,
130 isotope=int(isotope),
131 abundance=scattering_lengths[species][isotope]['abundance']
132 / 100, # % -> fraction
133 b_coh=scattering_lengths[species][isotope]['b_c'],
134 b_inc=scattering_lengths[species][isotope]['b_i'],
135 )
136 )
137 scattering_lengths = DataFrame.from_dict(data)
138 return scattering_lengths