Coverage for local_installation/dynasor/tools/acfs.py: 97%
27 statements
« prev ^ index » next coverage.py v7.3.2, created at 2024-12-21 12:02 +0000
« prev ^ index » next coverage.py v7.3.2, created at 2024-12-21 12:02 +0000
1"""
2A number of utility functions, for example for dealing with
3autocorrelation functions, Fourier transforms, and smoothing.
4"""
6import numpy as np
7from scipy.signal import correlate
8from numpy.typing import NDArray
9import pandas as pd
12def compute_acf(Z: NDArray[float], delta_t: float = 1.0, method='scipy'):
13 r"""
14 Computes the autocorrelation function (ACF) for a one-dimensional signal :math:`Z` in time as
16 .. math::
18 ACF(\tau) = \frac{\left < Z(t) Z^*(t+\tau) \right >}{\left < Z(t) Z^*(t) \right >}
20 Here, only the real part of the ACF is returned since if :math:`Z` is complex
21 the imaginary part should average out to zero for any stationary signal.
23 Parameters
24 ----------
25 Z
26 complex time signal
27 delta_t
28 spacing in time between two consecutive values in :math:`Z`
29 method
30 implementation to use; possible values: `numpy` and `scipy` (default and usually faster)
31 """
33 # keep only real part and normalize
34 acf = _compute_correlation_function(Z, Z, method)
35 acf = np.real(acf)
36 acf /= acf[0]
38 time_lags = delta_t * np.arange(0, len(acf), 1)
39 return time_lags, acf
42def _compute_correlation_function(Z1, Z2, method='scipy'):
43 N = len(Z1)
44 assert len(Z1) == len(Z2)
45 if method == 'scipy':
46 cf = correlate(Z1, Z2, mode='full')[N - 1:] / np.arange(N, 0, -1)
47 elif method == 'numpy':
48 cf = np.correlate(Z1, Z2, mode='full')[N - 1:] / np.arange(N, 0, -1)
49 else:
50 raise ValueError('method must be either numpy or scipy')
51 return cf
54# smoothing functions / FFT filters
55# -------------------------------------
56def gaussian_decay(t: NDArray[float], t_sigma: float):
57 r"""
58 Evaluates a gaussian distribution in time :math:`f(t)`, which can be applied to an ACF in time
59 to artificially damp it, i.e., forcing it to go to zero for long times.
61 .. math::
63 f(t) = \exp{\left [-\frac{1}{2} \left (\frac{t}{t_\mathrm{sigma}}\right )^2 \right ] }
65 Parameters
66 ----------
67 t
68 time array
69 t_sigma
70 width (standard deviation of the gaussian) of the decay
71 """
73 return np.exp(- 1 / 2 * (t / t_sigma) ** 2)
76def fermi_dirac(t: NDArray[float], t_0: float, t_width: float):
77 r"""
78 Evaluates a Fermi-Dirac-like function in time :math:`f(t)`, which can be applied to an ACF in
79 time to artificially damp it, i.e., forcing it to go to zero for long times without affecting
80 the short-time correlations too much.
82 .. math::
84 f(t) = \frac{1}{\exp{[(t-t_0)/t_\mathrm{width}}] + 1}
86 Parameters
87 ----------
88 t
89 time array
90 t_0
91 starting time for decay
92 t_width
93 width of the decay
95 """
96 return 1.0 / (np.exp((t - t_0) / t_width) + 1)
99def smoothing_function(data: NDArray[float], window_size: int, window_type: str = 'hamming'):
100 """
101 Smoothing function for 1D arrays.
102 This functions employs pandas rolling window average
104 Parameters
105 ----------
106 data
107 1D data array
108 window_size
109 The size of smoothing/smearing window
110 window_type
111 What type of window-shape to use, e.g. ``'blackman'``, ``'hamming'``, ``'boxcar'``
112 (see pandas and scipy documentaiton for more details)
114 """
115 series = pd.Series(data)
116 new_data = series.rolling(window_size, win_type=window_type, center=True, min_periods=1).mean()
117 return np.array(new_data)