Coverage for local_installation/dynasor/sample.py: 92%
123 statements
« prev ^ index » next coverage.py v7.3.2, created at 2024-12-21 12:02 +0000
« prev ^ index » next coverage.py v7.3.2, created at 2024-12-21 12:02 +0000
1import numpy as np
2import pandas as pd
3from typing import Dict, Any
6class Sample:
7 """
8 Class for holding correlation functions and some additional meta data.
9 Sample objects can be written to and read from file.
11 Parameters
12 ----------
13 data_dict
14 Dictionary with correlation functions.
15 meta_data
16 Dictionary with meta data, for example atom-types, simulation cell, number of atoms,
17 time stamps, user names, etc.
18 """
20 def __init__(self, data_dict: Dict[str, Any], **meta_data: Dict[str, Any]):
22 # set data dict as attributes
23 self._data_keys = list(data_dict)
24 for key in data_dict:
25 setattr(self, key, data_dict[key])
27 # set system parameters
28 self.meta_data = meta_data
29 self._atom_types = meta_data['atom_types']
30 self._pairs = meta_data['pairs']
31 self._particle_counts = meta_data['particle_counts']
32 self._cell = meta_data['cell']
34 def __getitem__(self, key):
35 """ Makes it possible to get the attributes using Sample['key'] """
36 try:
37 return getattr(self, key)
38 except AttributeError:
39 raise KeyError(key)
41 def write_to_npz(self, fname: str):
42 """ Write object to file in numpy's npz format.
44 Parameters
45 ----------
46 fname
47 Name of the file in which to store the Sample object.
48 """
49 data_to_save = dict(name=self.__class__.__name__)
50 data_to_save['meta_data'] = self.meta_data
51 data_dict = dict()
52 for key in self._data_keys:
53 data_dict[key] = getattr(self, key)
54 data_to_save['data_dict'] = data_dict
55 np.savez_compressed(fname, **data_to_save)
57 @property
58 def available_correlation_functions(self):
59 """ All the available correlation functions in sample. """
60 keys_to_skip = set(['q_points', 'q_norms', 'time', 'omega'])
61 return sorted(list(set(self._data_keys) - keys_to_skip))
63 @property
64 def dimensions(self):
65 r"""The dimensions for the samples, e.g., for :math:`S(q, \omega)`
66 the dimensions would be the :math:`q` and :math:`\omega` axes.
67 """
68 keys_to_skip = set(self.available_correlation_functions)
69 return sorted(list(set(self._data_keys) - keys_to_skip))
71 @property
72 def atom_types(self):
73 if self._atom_types is None: 73 ↛ 74line 73 didn't jump to line 74, because the condition on line 73 was never true
74 return None
75 return self._atom_types.copy()
77 @property
78 def particle_counts(self):
79 if self._particle_counts is None: 79 ↛ 80line 79 didn't jump to line 80, because the condition on line 79 was never true
80 return None
81 return self._particle_counts.copy()
83 @property
84 def pairs(self):
85 if self._pairs is None: 85 ↛ 86line 85 didn't jump to line 86, because the condition on line 85 was never true
86 return None
87 return self._pairs.copy()
89 @property
90 def cell(self):
91 if self._cell is None: 91 ↛ 92line 91 didn't jump to line 92, because the condition on line 91 was never true
92 return None
93 return self._cell.copy()
95 def __repr__(self):
96 return str(self)
98 def __str__(self):
99 s_contents = [self.__class__.__name__]
100 s_contents.append(f'Atom types: {self.atom_types}')
101 s_contents.append(f'Pairs: {self.pairs}')
102 s_contents.append(f'Particle counts: {self.particle_counts}')
103 s_contents.append('Simulations cell:')
104 s_contents.append(f'{self.cell}')
105 for key in self.dimensions:
106 s_i = f'{key:15} with shape: {np.shape(getattr(self, key))}'
107 s_contents.append(s_i)
108 for key in self.available_correlation_functions:
109 s_i = f'{key:15} with shape: {np.shape(getattr(self, key))}'
110 s_contents.append(s_i)
111 s = '\n'.join(s_contents)
112 return s
114 def _repr_html_(self) -> str:
115 s = [f'<h3>{self.__class__.__name__}</h3>']
116 s += ['<table border="1" class="dataframe">']
117 s += ['<thead><tr><th style="text-align: left">Field</th>'
118 '<th>Content/Size</th></tr></thead>']
119 s += ['<tbody>']
120 s += ['<tr><td style="text-align: left">Atom types</td>'
121 f'<td>{self.atom_types}</td></tr>']
122 s += ['<tr><td style="text-align: left">Pairs</td>'
123 f'<td>{self.pairs}</td></tr>']
124 s += ['<tr><td style="text-align: left">Particle counts</td>'
125 f'<td>{self.particle_counts}</td></tr>']
126 s += ['<tr><td style="text-align: left">Simulations cell</td>'
127 f'<td>{self.cell}</td></tr>']
128 for key in self._data_keys:
129 s += [f'<tr><td style="text-align: left">{key}</td>'
130 f'<td>{np.shape(getattr(self, key))}</td></tr>']
131 s += ['</tbody>']
132 s += ['</table>']
133 return '\n'.join(s)
135 @property
136 def has_incoherent(self):
137 """ Whether this sample contains the incoherent correlation functions or not. """
138 return False
140 @property
141 def has_currents(self):
142 """ Whether this sample contains the current correlation functions or not. """
143 return False
146class StaticSample(Sample):
148 def to_dataframe(self):
149 """ Returns correlation functions as pandas dataframe """
150 df = pd.DataFrame()
151 for dim in self.dimensions:
152 df[dim] = self[dim].tolist() # to list to make q-points (N, 3) work in dataframe
153 for key in self.available_correlation_functions:
154 df[key] = self[key].reshape(-1, )
155 return df
158class DynamicSample(Sample):
160 @property
161 def has_incoherent(self):
162 return 'Fqt_incoh' in self.available_correlation_functions
164 @property
165 def has_currents(self):
166 pair_string = '_'.join(self.pairs[0])
167 return f'Clqt_{pair_string}' in self.available_correlation_functions
169 def to_dataframe(self, q_index: int):
170 """ Returns correlation functions as pandas dataframe for the given q-index.
172 Parameters
173 ----------
174 q_index
175 index of q-point to return
176 """
177 df = pd.DataFrame()
178 for dim in self.dimensions:
179 if dim in ['q_points', 'q_norms']:
180 continue
181 df[dim] = self[dim]
182 for key in self.available_correlation_functions:
183 df[key] = self[key][q_index]
184 return df
187def read_sample_from_npz(fname: str) -> Sample:
188 """ Read :class:`Sample <dynasor.sample.Sample>` from file.
190 Parameters
191 ----------
192 fname
193 Path to the file (numpy npz format) from which to read
194 the :class:`Sample <dynasor.sample.Sample>` object.
195 """
196 data_read = np.load(fname, allow_pickle=True)
197 data_dict = data_read['data_dict'].item()
198 meta_data = data_read['meta_data'].item()
199 if data_read['name'] == 'StaticSample': 199 ↛ 200line 199 didn't jump to line 200, because the condition on line 199 was never true
200 return StaticSample(data_dict, **meta_data)
201 elif data_read['name'] == 'DynamicSample':
202 return DynamicSample(data_dict, **meta_data)
203 else:
204 return Sample(data_dict, **meta_data)