import numba
import concurrent
from functools import partial
from itertools import combinations_with_replacement
from typing import Tuple
import numpy as np
from ase import Atoms
from ase.units import fs
from numpy.typing import NDArray
from dynasor.logging_tools import logger
from dynasor.trajectory import Trajectory, WindowIterator
from dynasor.sample import DynamicSample, StaticSample
from dynasor.post_processing import fourier_cos_filon
from dynasor.core.time_averager import TimeAverager
from dynasor.core.reciprocal import calc_rho_q, calc_rho_j_q
from dynasor.qpoints.tools import get_index_offset
from dynasor.units import radians_per_fs_to_meV
[docs]def compute_dynamic_structure_factors(
traj: Trajectory,
q_points: NDArray[float],
dt: float,
window_size: int,
window_step: int = 1,
calculate_currents: bool = False,
calculate_incoherent: bool = False,
) -> DynamicSample:
"""Compute dynamic structure factors. The results are returned in the
form of a :class:`DynamicSample <dynasor.sample.DynamicSample>`
object.
Parameters
----------
traj
Input trajectory
q_points
Array of q-points in units of rad/Å with shape ``(N_qpoints, 3)`` in Cartesian coordinates
dt
Time difference in femtoseconds between two consecutive snapshots
in the trajectory. Note that you should *not* change :attr:`dt` if you change
:attr:`frame_step <dynasor.trajectory.Trajectory.frame_step>` in :attr:`traj`.
window_size
Length of the trajectory frame window to use for time correlation calculation.
It is expressed in terms of the number of time lags to consider
and thus determines the smallest frequency resolved.
window_step
Window step (or stride) given as the number of frames between consecutive trajectory
windows. This parameter does *not* affect the time between consecutive frames in the
calculation. If, e.g., :attr:`window_step` > :attr:`window_size`, some frames will not
be used.
calculate_currents
Calculate the current correlations. Requires velocities to be available in :attr:`traj`.
calculate_incoherent
Calculate the incoherent part (self-part) of :math:`F_incoh`.
"""
# sanity check input args
if q_points.shape[1] != 3:
raise ValueError('q-points array has the wrong shape.')
if dt <= 0:
raise ValueError(f'dt must be positive: dt= {dt}')
if window_size <= 2:
raise ValueError(f'window_size must be larger than 2: window_size= {window_size}')
if window_size % 2 != 0:
raise ValueError(f'window_size must be even: window_size= {window_size}')
if window_step <= 0:
raise ValueError(f'window_step must be positive: window_step= {window_step}')
# define internal parameters
n_qpoints = q_points.shape[0]
delta_t = traj.frame_step * dt
N_tc = window_size + 1
# log all setup information
dw = np.pi / (window_size * delta_t)
w_max = dw * window_size
w_N = 2 * np.pi / (2 * delta_t) # Nyquist angular frequency
logger.info(f'Spacing between samples (frame_step): {traj.frame_step}')
logger.info(f'Time between consecutive frames in input trajectory (dt): {dt} fs')
logger.info(f'Time between consecutive frames used (dt * frame_step): {delta_t} fs')
logger.info(f'Time window size (dt * frame_step * window_size): {delta_t * window_size:.1f} fs')
logger.info(f'Angular frequency resolution: dw = {dw:.6f} rad/fs = '
f'{dw * radians_per_fs_to_meV:.3f} meV')
logger.info(f'Maximum angular frequency (dw * window_size):'
f' {w_max:.6f} rad/fs = {w_max * radians_per_fs_to_meV:.3f} meV')
logger.info(f'Nyquist angular frequency (2pi / frame_step / dt / 2):'
f' {w_N:.6f} rad/fs = {w_N * radians_per_fs_to_meV:.3f} meV')
if calculate_currents:
logger.info('Calculating current (velocity) correlations')
if calculate_incoherent:
logger.info('Calculating incoherent part (self-part) of correlations')
# log some info regarding q-points
logger.info(f'Number of q-points: {n_qpoints}')
q_directions = q_points.copy()
q_distances = np.linalg.norm(q_points, axis=1)
nonzero = q_distances > 0
q_directions[nonzero] /= q_distances[nonzero].reshape(-1, 1)
# setup functions to process frames
def f2_rho(frame):
rho_qs_dict = dict()
for atom_type in frame.positions_by_type.keys():
x = frame.positions_by_type[atom_type]
rho_qs_dict[atom_type] = calc_rho_q(x, q_points)
frame.rho_qs_dict = rho_qs_dict
return frame
def f2_rho_and_j(frame):
rho_qs_dict = dict()
jz_qs_dict = dict()
jper_qs_dict = dict()
for atom_type in frame.positions_by_type.keys():
x = frame.positions_by_type[atom_type]
v = frame.velocities_by_type[atom_type]
rho_qs, j_qs = calc_rho_j_q(x, v, q_points)
jz_qs = np.sum(j_qs * q_directions, axis=1)
jper_qs = j_qs - (jz_qs[:, None] * q_directions)
rho_qs_dict[atom_type] = rho_qs
jz_qs_dict[atom_type] = jz_qs
jper_qs_dict[atom_type] = jper_qs
frame.rho_qs_dict = rho_qs_dict
frame.jz_qs_dict = jz_qs_dict
frame.jper_qs_dict = jper_qs_dict
return frame
if calculate_currents:
element_processor = f2_rho_and_j
else:
element_processor = f2_rho
# setup window iterator
window_iterator = WindowIterator(traj, width=N_tc, window_step=window_step,
element_processor=element_processor)
# define all pairs
pairs = list(combinations_with_replacement(traj.atom_types, r=2))
particle_counts = {key: len(val) for key, val in traj.atomic_indices.items()}
logger.debug('Considering pairs:')
for pair in pairs:
logger.debug(f' {pair}')
# setup all time averager instances
F_q_t_averager = dict()
for pair in pairs:
F_q_t_averager[pair] = TimeAverager(N_tc, n_qpoints)
if calculate_currents:
Cl_q_t_averager = dict()
Ct_q_t_averager = dict()
for pair in pairs:
Cl_q_t_averager[pair] = TimeAverager(N_tc, n_qpoints)
Ct_q_t_averager[pair] = TimeAverager(N_tc, n_qpoints)
if calculate_incoherent:
F_s_q_t_averager = dict()
for pair in traj.atom_types:
F_s_q_t_averager[pair] = TimeAverager(N_tc, n_qpoints)
# define correlation function
def calc_corr(window, time_i):
# Calculate correlations between two frames in the window without normalization 1/N
f0 = window[0]
fi = window[time_i]
for s1, s2 in pairs:
Fqt = np.real(f0.rho_qs_dict[s1] * fi.rho_qs_dict[s2].conjugate())
if s1 != s2:
Fqt += np.real(f0.rho_qs_dict[s2] * fi.rho_qs_dict[s1].conjugate())
F_q_t_averager[(s1, s2)].add_sample(time_i, Fqt)
if calculate_currents:
for s1, s2 in pairs:
Clqt = np.real(f0.jz_qs_dict[s1] * fi.jz_qs_dict[s2].conjugate())
Ctqt = 0.5 * np.real(np.sum(f0.jper_qs_dict[s1] *
fi.jper_qs_dict[s2].conjugate(), axis=1))
if s1 != s2:
Clqt += np.real(f0.jz_qs_dict[s2] * fi.jz_qs_dict[s1].conjugate())
Ctqt += 0.5 * np.real(np.sum(f0.jper_qs_dict[s2] *
fi.jper_qs_dict[s1].conjugate(), axis=1))
Cl_q_t_averager[(s1, s2)].add_sample(time_i, Clqt)
Ct_q_t_averager[(s1, s2)].add_sample(time_i, Ctqt)
if calculate_incoherent:
for atom_type in traj.atom_types:
xi = fi.positions_by_type[atom_type]
x0 = f0.positions_by_type[atom_type]
Fsqt = np.real(calc_rho_q(xi - x0, q_points))
F_s_q_t_averager[atom_type].add_sample(time_i, Fsqt)
# run calculation
logging_interval = 1000
with concurrent.futures.ThreadPoolExecutor() as tpe:
# This is the "main loop" over the trajectory
for window in window_iterator:
logger.debug(f'Processing window {window[0].frame_index} to {window[-1].frame_index}')
if window[0].frame_index % logging_interval == 0:
logger.info(f'Processing window {window[0].frame_index} to {window[-1].frame_index}') # noqa
# The map conviniently applies calc_corr to all time-lags. However,
# as everything is done in place nothing gets returned so in order
# to start and wait for the processes to finish we must iterate
# over the None values returned
for _ in tpe.map(partial(calc_corr, window), range(len(window))):
pass
# collect results into dict with numpy arrays (n_qpoints, N_tc)
data_dict_corr = dict()
time = delta_t * np.arange(N_tc, dtype=float)
data_dict_corr['q_points'] = q_points
data_dict_corr['time'] = time
F_q_t_tot = np.zeros((n_qpoints, N_tc))
S_q_w_tot = np.zeros((n_qpoints, N_tc))
for pair in pairs:
key = '_'.join(pair)
F_q_t = 1 / traj.n_atoms * F_q_t_averager[pair].get_average_all()
w, S_q_w = fourier_cos_filon(F_q_t, delta_t)
S_q_w = np.array(S_q_w)
data_dict_corr['omega'] = w
data_dict_corr[f'Fqt_coh_{key}'] = F_q_t
data_dict_corr[f'Sqw_coh_{key}'] = S_q_w
# sum all partials to the total
F_q_t_tot += F_q_t
S_q_w_tot += S_q_w
data_dict_corr['Fqt_coh'] = F_q_t_tot
data_dict_corr['Sqw_coh'] = S_q_w_tot
if calculate_currents:
Cl_q_t_tot = np.zeros((n_qpoints, N_tc))
Ct_q_t_tot = np.zeros((n_qpoints, N_tc))
Cl_q_w_tot = np.zeros((n_qpoints, N_tc))
Ct_q_w_tot = np.zeros((n_qpoints, N_tc))
for pair in pairs:
key = '_'.join(pair)
Cl_q_t = 1 / traj.n_atoms * Cl_q_t_averager[pair].get_average_all()
Ct_q_t = 1 / traj.n_atoms * Ct_q_t_averager[pair].get_average_all()
_, Cl_q_w = fourier_cos_filon(Cl_q_t, delta_t)
_, Ct_q_w = fourier_cos_filon(Ct_q_t, delta_t)
data_dict_corr[f'Clqt_{key}'] = Cl_q_t
data_dict_corr[f'Ctqt_{key}'] = Ct_q_t
data_dict_corr[f'Clqw_{key}'] = Cl_q_w
data_dict_corr[f'Ctqw_{key}'] = Ct_q_w
# sum all partials to the total
Cl_q_t_tot += Cl_q_t
Ct_q_t_tot += Ct_q_t
Cl_q_w_tot += Cl_q_w
Ct_q_w_tot += Ct_q_w
data_dict_corr['Clqt'] = Cl_q_t_tot
data_dict_corr['Ctqt'] = Ct_q_t_tot
data_dict_corr['Clqw'] = Cl_q_w_tot
data_dict_corr['Ctqw'] = Ct_q_w_tot
if calculate_incoherent:
Fs_q_t_tot = np.zeros((n_qpoints, N_tc))
Ss_q_w_tot = np.zeros((n_qpoints, N_tc))
for atom_type in traj.atom_types:
Fs_q_t = 1 / traj.n_atoms * F_s_q_t_averager[atom_type].get_average_all()
_, Ss_q_w = fourier_cos_filon(Fs_q_t, delta_t)
data_dict_corr[f'Fqt_incoh_{atom_type}'] = Fs_q_t
data_dict_corr[f'Sqw_incoh_{atom_type}'] = Ss_q_w
# sum all partials to the total
Fs_q_t_tot += Fs_q_t
Ss_q_w_tot += Ss_q_w
data_dict_corr['Fqt_incoh'] = Fs_q_t_tot
data_dict_corr['Sqw_incoh'] = Ss_q_w_tot
data_dict_corr['Fqt'] = data_dict_corr['Fqt_coh'] + data_dict_corr['Fqt_incoh']
data_dict_corr['Sqw'] = data_dict_corr['Sqw_coh'] + data_dict_corr['Sqw_incoh']
else:
data_dict_corr['Fqt'] = data_dict_corr['Fqt_coh'].copy()
data_dict_corr['Sqw'] = data_dict_corr['Sqw_coh'].copy()
# finalize results with additional meta data
result = DynamicSample(data_dict_corr, atom_types=traj.atom_types, pairs=pairs,
particle_counts=particle_counts, cell=traj.cell,
time_between_frames=delta_t,
maximum_time_lag=delta_t * window_size,
angular_frequency_resolution=dw,
maximum_angular_frequency=w_max,
number_of_frames=traj.number_of_frames_read)
return result
[docs]def compute_static_structure_factors(
traj: Trajectory,
q_points: NDArray[float],
) -> StaticSample:
r"""Compute static structure factors. The results are returned in the
form of a :class:`StaticSample <dynasor.sample.StaticSample>`
object.
Parameters
----------
traj
Input trajectory
q_points
Array of q-points in units of rad/Å with shape ``(N_qpoints, 3)`` in Cartesian coordinates
"""
# sanity check input args
if q_points.shape[1] != 3:
raise ValueError('q-points array has the wrong shape.')
n_qpoints = q_points.shape[0]
logger.info(f'Number of q-points: {n_qpoints}')
# define all pairs
pairs = list(combinations_with_replacement(traj.atom_types, r=2))
particle_counts = {key: len(val) for key, val in traj.atomic_indices.items()}
logger.debug('Considering pairs:')
for pair in pairs:
logger.debug(f' {pair}')
# processing function
def f2_rho(frame):
rho_qs_dict = dict()
for atom_type in frame.positions_by_type.keys():
x = frame.positions_by_type[atom_type]
rho_qs_dict[atom_type] = calc_rho_q(x, q_points)
frame.rho_qs_dict = rho_qs_dict
return frame
# setup averager
Sq_averager = dict()
for pair in pairs:
Sq_averager[pair] = TimeAverager(1, n_qpoints) # time average with only timelag=0
# main loop
for frame in traj:
# process_frame
f2_rho(frame)
logger.debug(f'Processing frame {frame.frame_index}')
for s1, s2 in pairs:
# compute correlation
Sq_pair = np.real(frame.rho_qs_dict[s1] * frame.rho_qs_dict[s2].conjugate())
if s1 != s2:
Sq_pair += np.real(frame.rho_qs_dict[s2] * frame.rho_qs_dict[s1].conjugate())
Sq_averager[(s1, s2)].add_sample(0, Sq_pair)
# collect results
data_dict = dict()
data_dict['q_points'] = q_points
S_q_tot = np.zeros((n_qpoints, 1))
for s1, s2 in pairs:
Sq = 1 / traj.n_atoms * Sq_averager[(s1, s2)].get_average_at_timelag(0).reshape(-1, 1)
data_dict[f'Sq_{s1}_{s2}'] = Sq
S_q_tot += Sq
data_dict['Sq'] = S_q_tot
# finalize results
result = StaticSample(data_dict, atom_types=traj.atom_types, pairs=pairs,
particle_counts=particle_counts, cell=traj.cell,
number_of_frames=traj.number_of_frames_read)
return result
[docs]def compute_spectral_energy_density(
traj: Trajectory,
ideal_supercell: Atoms,
primitive_cell: Atoms,
q_points: NDArray[float],
dt: float,
partial: bool = False
) -> Tuple[NDArray[float], NDArray[float]]:
r"""
Compute the spectral energy density (SED) at specific q-points. The results
are returned in the form of a tuple, which comprises the angular
frequencies in an array of length ``N_times`` in units of rad/fs and the
SED in units of eV/(rad/fs) as an array of shape ``(N_qpoints, N_times)``.
The normalization is chosen such that integrating the SED of a q-point
together with the supplied angular frequenceies omega (rad/fs) yields
1/2kBT * number of bands (where number of bands = len(prim) * 3)
More details can be found in Thomas *et al.*, Physical Review B **81**, 081411 (2010),
which should be cited when using this function along with the dynasor reference.
**Note 1:**
SED analysis is only suitable for crystalline materials without diffusion as
atoms are assumed to move around fixed reference positions throughout the entire trajectory.
**Note 2:**
This implementation reads the full trajectory and can thus consume a lot of memory.
Parameters
----------
traj
Input trajectory
ideal_supercell
Ideal structure defining the reference positions. Do not change the
masses in the ASE atoms objects to dynasor internal units, this will be
done internally
primitive_cell
Underlying primitive structure. Must be aligned correctly with :attr:`ideal_supercell`.
q_points
Array of q-points in units of rad/Å with shape ``(N_qpoints, 3)`` in Cartesian coordinates
dt
Time difference in femtoseconds between two consecutive snapshots in
the trajectory. Note that you should not change :attr:`dt` if you change
:attr:`frame_step <dynasor.trajectory.Trajectory.frame_step>` in :attr:`traj`.
partial
If True the SED will be returned decomposed per basis and Cartesian direction.
The shape is ``(N_qpoints, N_frequencies, len(primitive_cell), 3)``
"""
delta_t = traj.frame_step * dt
# logger
logger.info('Running SED')
logger.info(f'Time between consecutive frames (dt * frame_step): {delta_t} fs')
logger.info(f'Number of atoms in primitive_cell: {len(primitive_cell)}')
logger.info(f'Number of atoms in ideal_supercell: {len(ideal_supercell)}')
logger.info(f'Number of q-points: {q_points.shape[0]}')
# check that the ideal supercell agrees with traj
if traj.n_atoms != len(ideal_supercell):
raise ValueError('ideal_supercell must contain the same number of atoms as the trajectory.')
if len(primitive_cell) >= len(ideal_supercell):
raise ValueError('primitive_cell contains more atoms than ideal_supercell.')
# colllect all velocities, and scale with sqrt(masses)
masses = ideal_supercell.get_masses().reshape(-1, 1) / fs**2 # From Dalton to dmu
velocities = []
for it, frame in enumerate(traj):
logger.debug(f'Reading frame {it}')
if frame.velocities_by_type is None:
raise ValueError(f'Could not read velocities from frame {it}')
v = frame.get_velocities_as_array(traj.atomic_indices) # in Å/fs
velocities.append(np.sqrt(masses) * v)
logger.info(f'Number of snapshots: {len(velocities)}')
# Perform the FFT on the last axis for extra speed (maybe not needed)
N_samples = len(velocities)
velocities = np.array(velocities)
# places time index last and makes a copy for continuity
velocities = velocities.transpose(1, 2, 0).copy()
# #atoms in supercell x 3 directions x #frequencies
velocities = np.fft.rfft(velocities, axis=2)
# Calcualte indices and offsets needed for the sed method
indices, offsets = get_index_offset(ideal_supercell, primitive_cell)
# Phase factor for use in FT. #qpoints x #atoms in supercell
cell_positions = np.dot(offsets, primitive_cell.cell)
phase = np.dot(q_points, cell_positions.T) # #qpoints x #unit cells
phase_factors = np.exp(1.0j * phase)
# This dict maps the offsets to an index so ndarrays can be over
# offset,index instead of atoms in supercell
offset_dict = {off: n for n, off in enumerate(set(tuple(offset) for offset in offsets))}
# Pick out some shapes
n_super, _, n_w = velocities.shape
n_qpts = len(q_points)
n_prim = len(primitive_cell)
n_offsets = len(offset_dict)
# This new array will be indexed by index and offset instead (and also transposed)
new_velocities = np.zeros((n_w, 3, n_prim, n_offsets), dtype=velocities.dtype)
for i in range(n_super):
j = indices[i] # atom with index i in the supercell is of basis type j ...
n = offset_dict[tuple(offsets[i])] # and its offset has index n
new_velocities[:, :, j, n] = velocities[i].T
velocities = new_velocities
# Same story with the spatial phase factors
new_phase_factors = np.zeros((n_qpts, n_prim, n_offsets), dtype=phase_factors.dtype)
for i in range(n_super):
j = indices[i]
n = offset_dict[tuple(offsets[i])]
new_phase_factors[:, j, n] = phase_factors[:, i]
phase_factors = new_phase_factors
# calcualte the density in a numba function
density = _sed_inner_loop(phase_factors, velocities)
if not partial:
density = np.sum(density, axis=(2, 3))
# units
# make so that the velocities were originally in Angstrom / fs to be compatible with eV and Da
# the time delta in the fourier transform
density = density * delta_t**2
# Divide by the length of the time signal
density = density / (N_samples * delta_t)
# Divide by the number of primitive cells
density = density / (n_super / n_prim)
# Factor so the sed can be integrated together with the returned omega
# numpy fft works with ordinary/linear frequencies and not angular freqs
density = density / (2*np.pi)
# angular frequencies
w = 2 * np.pi * np.fft.rfftfreq(N_samples, delta_t) # rad/fs
return w, density
@numba.njit(parallel=True, fastmath=True)
def _sed_inner_loop(phase_factors, velocities):
"""This numba function calculates the spatial FT using precomputed phase factors
As the use case can be one or many q-points the parallelization is over the
temporal frequency components instead.
"""
n_qpts = phase_factors.shape[0] # q-point index
n_prim = phase_factors.shape[1] # basis atom index
n_super = phase_factors.shape[2] # unit cell index
n_freqs = velocities.shape[0] # frequency, direction, basis atom, unit cell
density = np.zeros((n_qpts, n_freqs, n_prim, 3), dtype=np.float64)
for w in numba.prange(n_freqs):
for k in range(n_qpts):
for a in range(3):
for b in range(n_prim):
tmp = 0.0j
for n in range(n_super):
tmp += phase_factors[k, b, n] * velocities[w, a, b, n]
density[k, w, b, a] += np.abs(tmp)**2
return density