Source code for dynasor.correlation_functions

import numba
import concurrent
from functools import partial
from itertools import combinations_with_replacement
from typing import Tuple

import numpy as np
from ase import Atoms
from numpy.typing import NDArray

from dynasor.logging_tools import logger
from dynasor.trajectory import Trajectory, WindowIterator
from dynasor.sample import DynamicSample, StaticSample
from dynasor.post_processing import fourier_cos_filon
from dynasor.core.time_averager import TimeAverager
from dynasor.core.reciprocal import calc_rho_q, calc_rho_j_q
from dynasor.qpoints.tools import get_index_offset
from dynasor.units import radians_per_fs_to_meV


[docs]def compute_dynamic_structure_factors( traj: Trajectory, q_points: NDArray[float], dt: float, window_size: int, window_step: int = 1, calculate_currents: bool = False, calculate_incoherent: bool = False, ) -> DynamicSample: """Compute dynamic structure factors. The results are returned in the form of a :class:`DynamicSample <dynasor.sample.DynamicSample>` object. Parameters ---------- traj Input trajectory q_points Array of q-points in units of 2π/Å with shape ``(N_qpoints, 3)`` in Cartesian coordinates dt Time difference in femtoseconds between two consecutive snapshots in the trajectory. Note that you should *not* change :attr:`dt` if you change :attr:`frame_step <dynasor.trajectory.Trajectory.frame_step>` in :attr:`traj`. window_size Length of the trajectory frame window to use for time correlation calculation. It is expressed in terms of the number of time lags to consider and thus determines the smallest frequency resolved. window_step Window step (or stride) given as the number of frames between consecutive trajectory windows. This parameter does *not* affect the time between consecutive frames in the calculation. If, e.g., :attr:`window_step` > :attr:`window_size`, some frames will not be used. calculate_currents Calculate the current correlations. Requires velocities to be available in :attr:`traj`. calculate_incoherent Calculate the incoherent part (self-part) of :math:`F_incoh`. """ # sanity check input args if q_points.shape[1] != 3: raise ValueError('q-points array has the wrong shape.') if dt <= 0: raise ValueError(f'dt must be positive: dt= {dt}') if window_size <= 2: raise ValueError(f'window_size must be larger than 2: window_size= {window_size}') if window_size % 2 != 0: raise ValueError(f'window_size must be even: window_size= {window_size}') if window_step <= 0: raise ValueError(f'window_step must be positive: window_step= {window_step}') # define internal parameters n_qpoints = q_points.shape[0] delta_t = traj.frame_step * dt N_tc = window_size + 1 # log all setup information dw = np.pi / (window_size * delta_t) w_max = dw * window_size w_N = 2 * np.pi / (2 * delta_t) # Nyquist angular frequency logger.info(f'Spacing between samples (frame_step): {traj.frame_step}') logger.info(f'Time between consecutive frames in input trajectory (dt): {dt} fs') logger.info(f'Time between consecutive frames used (dt * frame_step): {delta_t} fs') logger.info(f'Time window size (dt * frame_step * window_size): {delta_t * window_size:.1f} fs') logger.info(f'Angular frequency resolution: dw = {dw:.6f} rad/fs = ' f'{dw * radians_per_fs_to_meV:.3f} meV') logger.info(f'Maximum angular frequency (dw * window_size):' f' {w_max:.6f} rad/fs = {w_max * radians_per_fs_to_meV:.3f} meV') logger.info(f'Nyquist angular frequency (2pi / frame_step / dt / 2):' f' {w_N:.6f} rad/fs = {w_N * radians_per_fs_to_meV:.3f} meV') if calculate_currents: logger.info('Calculating current (velocity) correlations') if calculate_incoherent: logger.info('Calculating incoherent part (self-part) of correlations') # log some info regarding q-points logger.info(f'Number of q-points: {n_qpoints}') q_directions = q_points.copy() q_distances = np.linalg.norm(q_points, axis=1) nonzero = q_distances > 0 q_directions[nonzero] /= q_distances[nonzero].reshape(-1, 1) # setup functions to process frames def f2_rho(frame): rho_qs_dict = dict() for atom_type in frame.positions_by_type.keys(): x = frame.positions_by_type[atom_type] rho_qs_dict[atom_type] = calc_rho_q(x, q_points) frame.rho_qs_dict = rho_qs_dict return frame def f2_rho_and_j(frame): rho_qs_dict = dict() jz_qs_dict = dict() jper_qs_dict = dict() for atom_type in frame.positions_by_type.keys(): x = frame.positions_by_type[atom_type] v = frame.velocities_by_type[atom_type] rho_qs, j_qs = calc_rho_j_q(x, v, q_points) jz_qs = np.sum(j_qs * q_directions, axis=1) jper_qs = j_qs - (jz_qs[:, None] * q_directions) rho_qs_dict[atom_type] = rho_qs jz_qs_dict[atom_type] = jz_qs jper_qs_dict[atom_type] = jper_qs frame.rho_qs_dict = rho_qs_dict frame.jz_qs_dict = jz_qs_dict frame.jper_qs_dict = jper_qs_dict return frame if calculate_currents: element_processor = f2_rho_and_j else: element_processor = f2_rho # setup window iterator window_iterator = WindowIterator(traj, width=N_tc, window_step=window_step, element_processor=element_processor) # define all pairs pairs = list(combinations_with_replacement(traj.atom_types, r=2)) particle_counts = {key: len(val) for key, val in traj.atomic_indices.items()} logger.debug('Considering pairs:') for pair in pairs: logger.debug(f' {pair}') # setup all time averager instances F_q_t_averager = dict() for pair in pairs: F_q_t_averager[pair] = TimeAverager(N_tc, n_qpoints) if calculate_currents: Cl_q_t_averager = dict() Ct_q_t_averager = dict() for pair in pairs: Cl_q_t_averager[pair] = TimeAverager(N_tc, n_qpoints) Ct_q_t_averager[pair] = TimeAverager(N_tc, n_qpoints) if calculate_incoherent: F_s_q_t_averager = dict() for pair in traj.atom_types: F_s_q_t_averager[pair] = TimeAverager(N_tc, n_qpoints) # define correlation function def calc_corr(window, time_i): # Calculate correlations between two frames in the window without normalization 1/N f0 = window[0] fi = window[time_i] for s1, s2 in pairs: Fqt = np.real(f0.rho_qs_dict[s1] * fi.rho_qs_dict[s2].conjugate()) if s1 != s2: Fqt += np.real(f0.rho_qs_dict[s2] * fi.rho_qs_dict[s1].conjugate()) F_q_t_averager[(s1, s2)].add_sample(time_i, Fqt) if calculate_currents: for s1, s2 in pairs: Clqt = np.real(f0.jz_qs_dict[s1] * fi.jz_qs_dict[s2].conjugate()) Ctqt = 0.5 * np.real(np.sum(f0.jper_qs_dict[s1] * fi.jper_qs_dict[s2].conjugate(), axis=1)) if s1 != s2: Clqt += np.real(f0.jz_qs_dict[s2] * fi.jz_qs_dict[s1].conjugate()) Ctqt += 0.5 * np.real(np.sum(f0.jper_qs_dict[s2] * fi.jper_qs_dict[s1].conjugate(), axis=1)) Cl_q_t_averager[(s1, s2)].add_sample(time_i, Clqt) Ct_q_t_averager[(s1, s2)].add_sample(time_i, Ctqt) if calculate_incoherent: for atom_type in traj.atom_types: xi = fi.positions_by_type[atom_type] x0 = f0.positions_by_type[atom_type] Fsqt = np.real(calc_rho_q(xi - x0, q_points)) F_s_q_t_averager[atom_type].add_sample(time_i, Fsqt) # run calculation logging_interval = 1000 with concurrent.futures.ThreadPoolExecutor() as tpe: # This is the "main loop" over the trajectory for window in window_iterator: logger.debug(f'Processing window {window[0].frame_index} to {window[-1].frame_index}') if window[0].frame_index % logging_interval == 0: logger.info(f'Processing window {window[0].frame_index} to {window[-1].frame_index}') # noqa # The map conviniently applies calc_corr to all time-lags. However, # as everything is done in place nothing gets returned so in order # to start and wait for the processes to finish we must iterate # over the None values returned for _ in tpe.map(partial(calc_corr, window), range(len(window))): pass # collect results into dict with numpy arrays (n_qpoints, N_tc) data_dict_corr = dict() time = delta_t * np.arange(N_tc, dtype=float) data_dict_corr['q_points'] = q_points data_dict_corr['time'] = time F_q_t_tot = np.zeros((n_qpoints, N_tc)) S_q_w_tot = np.zeros((n_qpoints, N_tc)) for pair in pairs: key = '_'.join(pair) F_q_t = 1 / traj.n_atoms * F_q_t_averager[pair].get_average_all() w, S_q_w = fourier_cos_filon(F_q_t, delta_t) S_q_w = np.array(S_q_w) data_dict_corr['omega'] = w data_dict_corr[f'Fqt_coh_{key}'] = F_q_t data_dict_corr[f'Sqw_coh_{key}'] = S_q_w # sum all partials to the total F_q_t_tot += F_q_t S_q_w_tot += S_q_w data_dict_corr['Fqt_coh'] = F_q_t_tot data_dict_corr['Sqw_coh'] = S_q_w_tot if calculate_currents: Cl_q_t_tot = np.zeros((n_qpoints, N_tc)) Ct_q_t_tot = np.zeros((n_qpoints, N_tc)) Cl_q_w_tot = np.zeros((n_qpoints, N_tc)) Ct_q_w_tot = np.zeros((n_qpoints, N_tc)) for pair in pairs: key = '_'.join(pair) Cl_q_t = 1 / traj.n_atoms * Cl_q_t_averager[pair].get_average_all() Ct_q_t = 1 / traj.n_atoms * Ct_q_t_averager[pair].get_average_all() _, Cl_q_w = fourier_cos_filon(Cl_q_t, delta_t) _, Ct_q_w = fourier_cos_filon(Ct_q_t, delta_t) data_dict_corr[f'Clqt_{key}'] = Cl_q_t data_dict_corr[f'Ctqt_{key}'] = Ct_q_t data_dict_corr[f'Clqw_{key}'] = Cl_q_w data_dict_corr[f'Ctqw_{key}'] = Ct_q_w # sum all partials to the total Cl_q_t_tot += Cl_q_t Ct_q_t_tot += Ct_q_t Cl_q_w_tot += Cl_q_w Ct_q_w_tot += Ct_q_w data_dict_corr['Clqt'] = Cl_q_t_tot data_dict_corr['Ctqt'] = Ct_q_t_tot data_dict_corr['Clqw'] = Cl_q_w_tot data_dict_corr['Ctqw'] = Ct_q_w_tot if calculate_incoherent: Fs_q_t_tot = np.zeros((n_qpoints, N_tc)) Ss_q_w_tot = np.zeros((n_qpoints, N_tc)) for atom_type in traj.atom_types: Fs_q_t = 1 / traj.n_atoms * F_s_q_t_averager[atom_type].get_average_all() _, Ss_q_w = fourier_cos_filon(Fs_q_t, delta_t) data_dict_corr[f'Fqt_incoh_{atom_type}'] = Fs_q_t data_dict_corr[f'Sqw_incoh_{atom_type}'] = Ss_q_w # sum all partials to the total Fs_q_t_tot += Fs_q_t Ss_q_w_tot += Ss_q_w data_dict_corr['Fqt_incoh'] = Fs_q_t_tot data_dict_corr['Sqw_incoh'] = Ss_q_w_tot data_dict_corr['Fqt'] = data_dict_corr['Fqt_coh'] + data_dict_corr['Fqt_incoh'] data_dict_corr['Sqw'] = data_dict_corr['Sqw_coh'] + data_dict_corr['Sqw_incoh'] else: data_dict_corr['Fqt'] = data_dict_corr['Fqt_coh'].copy() data_dict_corr['Sqw'] = data_dict_corr['Sqw_coh'].copy() # finalize results with additional meta data result = DynamicSample(data_dict_corr, atom_types=traj.atom_types, pairs=pairs, particle_counts=particle_counts, cell=traj.cell, time_between_frames=delta_t, maximum_time_lag=delta_t * window_size, angular_frequency_resolution=dw, maximum_angular_frequency=w_max, number_of_frames=traj.number_of_frames_read) return result
[docs]def compute_static_structure_factors( traj: Trajectory, q_points: NDArray[float], ) -> StaticSample: r"""Compute static structure factors. The results are returned in the form of a :class:`StaticSample <dynasor.sample.StaticSample>` object. Parameters ---------- traj Input trajectory q_points Array of q-points in units of 2π/Å with shape ``(N_qpoints, 3)`` in Cartesian coordinates """ # sanity check input args if q_points.shape[1] != 3: raise ValueError('q-points array has the wrong shape.') n_qpoints = q_points.shape[0] logger.info(f'Number of q-points: {n_qpoints}') # define all pairs pairs = list(combinations_with_replacement(traj.atom_types, r=2)) particle_counts = {key: len(val) for key, val in traj.atomic_indices.items()} logger.debug('Considering pairs:') for pair in pairs: logger.debug(f' {pair}') # processing function def f2_rho(frame): rho_qs_dict = dict() for atom_type in frame.positions_by_type.keys(): x = frame.positions_by_type[atom_type] rho_qs_dict[atom_type] = calc_rho_q(x, q_points) frame.rho_qs_dict = rho_qs_dict return frame # setup averager Sq_averager = dict() for pair in pairs: Sq_averager[pair] = TimeAverager(1, n_qpoints) # time average with only timelag=0 # main loop for frame in traj: # process_frame f2_rho(frame) logger.debug(f'Processing frame {frame.frame_index}') for s1, s2 in pairs: # compute correlation Sq_pair = np.real(frame.rho_qs_dict[s1] * frame.rho_qs_dict[s2].conjugate()) if s1 != s2: Sq_pair += np.real(frame.rho_qs_dict[s2] * frame.rho_qs_dict[s1].conjugate()) Sq_averager[(s1, s2)].add_sample(0, Sq_pair) # collect results data_dict = dict() data_dict['q_points'] = q_points S_q_tot = np.zeros((n_qpoints, 1)) for s1, s2 in pairs: Sq = 1 / traj.n_atoms * Sq_averager[(s1, s2)].get_average_at_timelag(0).reshape(-1, 1) data_dict[f'Sq_{s1}_{s2}'] = Sq S_q_tot += Sq data_dict['Sq'] = S_q_tot # finalize results result = StaticSample(data_dict, atom_types=traj.atom_types, pairs=pairs, particle_counts=particle_counts, cell=traj.cell, number_of_frames=traj.number_of_frames_read) return result
[docs]def compute_spectral_energy_density( traj: Trajectory, ideal_supercell: Atoms, primitive_cell: Atoms, q_points: NDArray[float], dt: float, ) -> Tuple[NDArray[float], NDArray[float]]: r""" Compute the spectral energy density (SED) at specific q-points. The results are returned in the form of a tuple, which comprises the angular frequencies in an array of length ``N_times`` in units of 2π/fs and the SED in units of Da*(Å/fs)² as an array of shape ``(N_qpoints, N_times)``. More details can be found in Thomas *et al.*, Physical Review B **81**, 081411 (2010), which should be cited when using this function along with the dynasor reference. **Note 1:** SED analysis is only suitable for crystalline materials without diffusion as atoms are assumed to move around fixed reference positions throughout the entire trajectory. **Note 2:** This implementation reads the full trajectory and can thus consume a lot of memory. Parameters ---------- traj Input trajectory ideal_supercell Ideal structure defining the reference positions primitive_cell Underlying primitive structure. Must be aligned correctly with :attr:`ideal_supercell`. q_points Array of q-points in units of 2π/Å with shape ``(N_qpoints, 3)`` in Cartesian coordinates dt Time difference in femtoseconds between two consecutive snapshots in the trajectory. Note that you should not change :attr:`dt` if you change :attr:`frame_step <dynasor.trajectory.Trajectory.frame_step>` in :attr:`traj`. """ delta_t = traj.frame_step * dt # logger logger.info('Running SED') logger.info(f'Time between consecutive frames (dt * frame_step): {delta_t} fs') logger.info(f'Number of atoms in primitive_cell: {len(primitive_cell)}') logger.info(f'Number of atoms in ideal_supercell: {len(ideal_supercell)}') logger.info(f'Number of q-points: {q_points.shape[0]}') # check that the ideal supercell agrees with traj if traj.n_atoms != len(ideal_supercell): raise ValueError('ideal_supercell must contain the same number of atoms as the trajectory.') if len(primitive_cell) >= len(ideal_supercell): raise ValueError('primitive_cell contains more atoms than ideal_supercell.') # colllect all velocities, and scale with sqrt(masses) masses = ideal_supercell.get_masses().reshape(-1, 1) velocities = [] for it, frame in enumerate(traj): logger.debug(f'Reading frame {it}') if frame.velocities_by_type is None: raise ValueError(f'Could not read velocities from frame {it}') v = frame.get_velocities_as_array(traj.atomic_indices) velocities.append(np.sqrt(masses) * v) logger.info(f'Number of snapshots: {len(velocities)}') # Perform the FFT on the last axis for extra speed (maybe not needed) N_samples = len(velocities) velocities = np.array(velocities) # places time index last and makes a copy for continuity velocities = velocities.transpose(1, 2, 0).copy() # #atoms in supercell x 3 directions x #frequencies velocities = np.fft.rfft(velocities, axis=2) # Calcualte indices and offsets needed for the sed method indices, offsets = get_index_offset(ideal_supercell, primitive_cell) # Phase factor for use in FT. #qpoints x #atoms in supercell cell_positions = np.dot(offsets, primitive_cell.cell) phase = np.dot(q_points, cell_positions.T) # #qpoints x #unit cells phase_factors = np.exp(1.0j * phase) # This dict maps the offsets to an index so ndarrays can be over # offset,index instead of atoms in supercell offset_dict = {off: n for n, off in enumerate(set(tuple(offset) for offset in offsets))} # Pick out some shapes n_super, _, n_w = velocities.shape n_qpts = len(q_points) n_prim = len(primitive_cell) n_offsets = len(offset_dict) # This new array will be indexed by index and offset instead (and also transposed) new_velocities = np.zeros((n_w, 3, n_prim, n_offsets), dtype=velocities.dtype) for i in range(n_super): j = indices[i] # atom with index i in the supercell is of basis type j ... n = offset_dict[tuple(offsets[i])] # and its offset has index n new_velocities[:, :, j, n] = velocities[i].T velocities = new_velocities # Same story with the spatial phase factors new_phase_factors = np.zeros((n_qpts, n_prim, n_offsets), dtype=phase_factors.dtype) for i in range(n_super): j = indices[i] n = offset_dict[tuple(offsets[i])] new_phase_factors[:, j, n] = phase_factors[:, i] phase_factors = new_phase_factors # calcualte the density in a numba function density = _sed_inner_loop(phase_factors, velocities) # angular frequencies w = 2 * np.pi * np.fft.rfftfreq(N_samples, delta_t) # radians/fs return w, density
@numba.njit(parallel=True, fastmath=True) def _sed_inner_loop(phase_factors, velocities): """This numba function calculates the spatial FT using precomputed phase factors As the use case can be one or many q-points the parallelization is over the temporal frequency components instead. """ n_qpts = phase_factors.shape[0] # q-point index n_prim = phase_factors.shape[1] # basis atom index n_super = phase_factors.shape[2] # unit cell index n_freqs = velocities.shape[0] # frequency, direction, basis atom, unit cell density = np.zeros((n_qpts, n_freqs), dtype=np.float64) for w in numba.prange(n_freqs): for k in range(n_qpts): for a in range(3): for b in range(n_prim): tmp = 0.0j for n in range(n_super): tmp += phase_factors[k, b, n] * velocities[w, a, b, n] density[k, w] += np.abs(tmp)**2 return density