Source code for dynasor.modes.project_modes

from typing import Tuple

import numpy as np

from ase import Atoms
from numpy.typing import NDArray

from dynasor.logging_tools import logger
from dynasor.trajectory import Trajectory
from .tools import get_wrapped_displacements


[docs]def project_modes(traj: Trajectory, modes: NDArray[float], ideal_supercell: Atoms, check_mic=True ) -> Tuple[NDArray[float], NDArray[float]]: """Projects an atomic trajectory onto set of phonon modes Parameters ---------- traj Input trajectory modes Modes to project on (1, Nlambda, N, 3) array where Nm is the number of modes and N is the number of atoms in the supercell ideal_supercell Used to find atomic displacements and should correspond to the ideal structure. Be careful not to mess up the permutation check_mic Whether to wrap the displacements or not, faster if no wrap. Returns ------- Q mode coordinates, complex ndarray (length of traj, number of modes) P mode momenta, complex ndarray (length of traj, number of modes) """ # logger logger.info('Running mode projection') modes = np.array(modes) original_mode_shape = modes.shape if modes.shape[-2] != traj.n_atoms: raise ValueError('Second dim in modes must be same len as number of atoms in trajectory') if traj.n_atoms != len(ideal_supercell): raise ValueError('ideal_supercell must contain the same number of atoms as the trajectory.') modes = modes.reshape((-1, modes.shape[-2], 3)) Q_traj, P_traj = [], [] for it, frame in enumerate(traj): logger.debug(f'Reading frame {it}') # Make positions into displacements x = frame.get_positions_as_array(traj._atomic_indices) u = x - ideal_supercell.positions # Calculate Q u = get_wrapped_displacements(u, ideal_supercell.cell, check_mic=check_mic) Q = np.einsum('mnx,nx->m', modes, u) # Calculate P if frame.velocities_by_type is not None: v = frame.get_velocities_as_array(traj._atomic_indices) P = np.einsum('mna,na->m', modes.conj(), v) else: P = np.zeros_as(Q) Q_traj.append(Q) P_traj.append(P) Q_traj = Q_traj.reshape((len(Q_traj), *original_mode_shape[:-2])) P_traj = P_traj.reshape((len(P_traj), *original_mode_shape[:-2])) return np.array(Q_traj), np.array(P_traj)