Source code for dynasor.post_processing.filon

"""
This module provides an implementation of Filon's integration formula.
For information about Filon's formula, see e.g.
`Abramowitz and Stegun, Handbook of Mathematical Functions,
section 25 <http://mathworld.wolfram.com/FilonsIntegrationFormula.html>`_ or
Allen and Tildesley, *Computer Simulation of Liquids*, Appendix D :cite:`AllTil87`.

Due to the algorithm the number of time samples must be odd i.e. t = dt * [0, ..., 2n]

for some angular frequency w

integral = f(x) @ (+[b/2, g, b, ..., b, g, b/2] * cos(w x)
                   +[-a,  0, 0, ..., 0, 0, a]   * sin(w x))

or

integral =
+ f[0   ] * (b/2 * cos(w x[0]) - a sin(w x[0]))
+ f[1   ] * (g   * cos(w x[1]))
+ f[2   ] * (b   * cos(w x[2]))
+ ...
+ f[2n-2] * (b   * cos(w x[2n-2]))
+ f[2n-1] * (g   * cos(w x[2n-1]))
+ f[2n  ] * (b/2 * cos(w x[2n]) - a sin(w x[2n]))

"""


import numpy as np
import numba
from numpy.typing import NDArray
from typing import Tuple


[docs]def fourier_cos_filon(f: NDArray[float], dt: float) -> Tuple[NDArray[float], NDArray[float]]: r"""Calculates the direct Fourier cosine transform :math:`F(w)` of a function :math:`f(t)` using Filon's integration method. Parameters ---------- f function values as a 2D array. second axis will be transformed. must contain an odd number of elements along second axis. dt spacing of t-axis (:math:`\Delta t`) Returns ------- w w containes values in the interval [0, pi/dt). length of w is f.shape[1] // 2 + 1. These frequencies corresponds to the frequencies from an fft. w == 2*np.pi*np.fft.rfftfreq(f.shape[1], dt) F transform of f along second axis. equivalent to np.fft.rfft(f, axis=1).real Example ------- A common use case is .. code-block:: python w, F = fourier_cos_filon(f, dt) """ if f.ndim != 2: raise ValueError('f must be 2D and last axis corresponding to integration variable') if f.shape[1] % 2 == 0: # Filon only works for odd N raise ValueError('f must contain an odd number of elements along second axis.') if f.shape[1] < 2: # Time signal must be atleast three long raise ValueError('f must contain atleast 3 elements along second axis.') w = np.linspace(0, 2 * np.pi / (2 * dt), f.shape[1]) return w, 2 * filon_2D(f, dt)
@numba.njit(fastmath=True, parallel=True) def filon_2D(f: NDArray[float], dt: float) -> NDArray: """Calculates the fourier transform over the last axis using filons method""" N_rows, Nt = f.shape assert Nt % 2 == 1 and Nt > 1 # Filon only works for odd N dw = np.pi / ((Nt - 1) * dt) Nw = Nt filon_wr = np.zeros((Nw, N_rows), dtype=np.float64) for wi in numba.prange(Nw): w = wi * dw filon_wr[wi] = filon_2D_inner(f, dt, w) filon_wr *= dt return filon_wr.T.copy() @numba.njit(fastmath=True) def filon_2D_inner(f, dt, w): """Calculates the transform of 1D f""" N_rows, Nt = f.shape alpha, beta, gamma = _alpha_beta_gamma_single(dt * w) t_arr = np.arange(Nt) * dt phase = np.cos(w * t_arr) # phase = np.sin(w * t_arr) # for sin transform phase[::2] *= beta # all evens get multiplied with beta phase[1:-1:2] *= gamma # all odds get multiplied with gamma # The enpoints (even index) get an extra factor of 1/2 phase[0] *= 0.5 phase[-1] *= 0.5 # The endpoints must also get an extra term phase[0] -= alpha * np.sin(w * t_arr[0]) # phase[0] += alpha * np.cos(w * t_arr[0]) phase[-1] += alpha * np.sin(w * t_arr[-1]) # phase[-1] -= alpha * np.cos(w * t_arr[-1]) filon = np.zeros(N_rows, dtype=np.float64) for r in range(N_rows): for t in range(Nt): filon[r] += f[r, t] * phase[t] return filon @numba.njit(fastmath=False) def _alpha_beta_gamma_single(t: float): # From theta (t), calculate alpha, beta, and gamma if t == 0: alpha, beta, gamma = 0.0, 2/3, 4/3 else: alpha = (t**2 + t * np.sin(t) * np.cos(t) - 2 * np.sin(t)**2) / t**3 beta = 2 * (t * (1 + np.cos(t)**2) - 2 * np.sin(t) * np.cos(t)) / t**3 gamma = 4 * (np.sin(t) - t * np.cos(t)) / t**3 return alpha, beta, gamma