Source code for dynasor.post_processing.spherical_average

import numpy as np

from copy import deepcopy
from dynasor.logging_tools import logger
from dynasor.sample import Sample
from numpy.typing import NDArray
from scipy.stats import norm


[docs]def get_spherically_averaged_sample_smearing( sample: Sample, q_norms: NDArray[float], q_width: float) -> Sample: r""" Compute a spherical average over q-points for all the correlation functions in :attr:`sample`. In the gaussian average method each q-point contributes to the function value at given :math:`\vec{q}` with a weight determined by a gaussian function. For example .. math:: F(q) = \sum_i w(\boldsymbol{q}_i, q) F(\boldsymbol{q}_i) where .. math:: w(\boldsymbol{q}_i, q) \propto \exp{\left [ -\frac{1}{2} \left ( \frac{|\boldsymbol{q}_i| - q}{q_{width}} \right)^2 \right ]} and .. math:: \sum_i w(\boldsymbol{q}_i, q) = 1.0 This corresponds to a gaussian smearing or convolution. The input parameters are :attr:`q_norms`, setting to the values of :math:`|\vec{q}|`, for which the function is evaluated and :attr:`q_width` specifying the standard deviation of the gaussian smearing. Parameters ---------- sample Input sample. q_norms Values of :math:`|\vec{q}|` at which to evaluate the correlation functions. q_width Standard deviation of the gaussian smearing. """ if not isinstance(sample, Sample): raise ValueError('Input sample is not a Sample object.') # get q-points q_points = sample.q_points if q_points.shape[1] != 3: raise ValueError('q-points array has the wrong shape.') # setup new input dicts for new Sample, remove q_points, add q_norms meta_data = deepcopy(sample.meta_data) data_dict = dict() for key in sample.dimensions: if key == 'q_points': continue data_dict[key] = sample[key] for key in sample.available_correlation_functions: Z = getattr(sample, key) averaged_data = _get_gaussian_average(q_points, Z, q_norms, q_width) data_dict[key] = averaged_data data_dict['q_norms'] = q_norms return sample.__class__(data_dict, **meta_data)
[docs]def get_spherically_averaged_sample_binned(sample: Sample, num_q_bins: int) -> Sample: r""" Compute a spherical average over q-points for all the correlation functions in `:attr:`sample`. Here, a q-binning method is used to conduct the spherical average, meaning all q-points are placed into spherical bins (shells). The corresponding function is calculated as the average of all q-points in a bin. If a q-bin does not contain any q-points, then its value is set to ``np.nan``. The q_min and q_max are determined from min/max of ``|q_points|``, and will determine the q-bin range. These will be set as bin-centers for the first and last bins repsectivley. The input parameter is the number of q-bins to use :attr:`num_q_bins`. Parameters ---------- sample Input sample num_q_bins number of q-bins to use """ if not isinstance(sample, Sample): raise ValueError('input sample is not a Sample object.') # get q-points q_points = sample.q_points if q_points.shape[1] != 3: raise ValueError('q-points array has wrong shape.') # setup new input dicts for new Sample, remove q_points, add q_norms meta_data = deepcopy(sample.meta_data) data_dict = dict() for key in sample.dimensions: if key == 'q_points': continue data_dict[key] = sample[key] # compute spherical average for each correlation function for key in sample.available_correlation_functions: Z = getattr(sample, key) q_bincenters, bin_counts, averaged_data = _get_bin_average(q_points, Z, num_q_bins) data_dict[key] = averaged_data data_dict['q_norms'] = q_bincenters return sample.__class__(data_dict, **meta_data)
def _get_gaussian_average( q_points: np.ndarray, Z: np.ndarray, q_norms: np.ndarray, q_width: float): q_norms_sample = np.linalg.norm(q_points, axis=1) Z_average = [] for q in q_norms: weights = _gaussian(q_norms_sample, x0=q, sigma=q_width).reshape(-1, 1) norm = np.sum(weights) if norm != 0: weights = weights / norm Z_average.append(np.sum(weights * Z, axis=0)) return np.array(Z_average) def _gaussian(x, x0, sigma): dist = norm(loc=x0, scale=sigma) return dist.pdf(x) def _get_bin_average(q_points: np.ndarray, data: np.ndarray, num_q_bins: int): """ Compute a spherical average over q-points for the data using q-bins. If a q-bin does not contain any q-points, then a np.nan is inserted. The q_min and q_min are determined from min/max of |q_points|, and will determine the bin-range. These will set as bin-centers for the first and last bins repsectivley. Parameters ---------- q_points array of q-points shape ``(Nq, 3)`` data data-array of shape ``(Nq, N)``, shape cannot be ``(Nq, )`` num_q_bins number of radial q-point bins to use Returns ------- q array of |q| bins of shape ``(num_q_bins, )`` data_averaged averaged data-array of shape `` """ N_qpoints = q_points.shape[0] N_t = data.shape[1] assert q_points.shape[1] == 3 assert data.shape[0] == N_qpoints # q-norms q_norms = np.linalg.norm(q_points, axis=1) assert q_norms.shape == (N_qpoints,) # setup bins q_max = np.max(q_norms) q_min = np.min(q_norms) delta_x = (q_max - q_min) / (num_q_bins - 1) q_range = (q_min - delta_x / 2, q_max + delta_x / 2) bin_counts, edges = np.histogram(q_norms, bins=num_q_bins, range=q_range) q_bincenters = 0.5 * (edges[1:] + edges[:-1]) # calculate average for each bin averaged_data = np.zeros((num_q_bins, N_t)) for bin_index in range(num_q_bins): # find q-indices that belong to this bin bin_min = edges[bin_index] bin_max = edges[bin_index + 1] bin_count = bin_counts[bin_index] q_indices = np.where(np.logical_and(q_norms >= bin_min, q_norms < bin_max))[0] assert len(q_indices) == bin_count logger.debug(f'bin {bin_index} contains {bin_count} q-points') # average over q-indices, if no indices then np.nan if bin_count == 0: logger.warning(f'No q-points for bin {bin_index}') data_bin = np.array([np.nan for _ in range(N_t)]) else: data_bin = data[q_indices, :].mean(axis=0) averaged_data[bin_index, :] = data_bin return q_bincenters, bin_counts, averaged_data