Source code for dynasor.qpoints.tools

import itertools
from fractions import Fraction
from typing import Dict, List, Tuple

import numpy as np
from numpy.typing import NDArray

from dynasor.modes.tools import inv


[docs]def get_supercell_qpoints_along_path( path: List[Tuple[str, str]], coordinates: Dict[str, NDArray[float]], primitive_cell: NDArray[float], super_cell: NDArray[float]) -> List[NDArray[float]]: r""" Returns the q-points commensurate with the given supercell along the specific path. Parameters ---------- path list of pairs of q-point labels coordinates dict with q-point labels and coordinates as keys and values, respectively; there must be one entry for each q-point label used in :attr:`path` primitive_cell cell metric of the primitive cell with lattice vectors as rows super_cell cell metric of the supercell with lattice vectors as rows Returns ------- supercell_paths A list of the accessible q-point coordinates along the specified segment Example -------- The following example illustrates how to retrieve the q-points that can be sampled using a supercell comprising :math:`6 \times 6 \times 6` conventional (4-atom) unit cells of FCC Al along the path X-:math:`\Gamma`-L. >>> import numpy as np >>> from ase.build import bulk >>> from dynasor.qpoints import get_supercell_qpoints_along_path >>> prim = bulk('Al', 'fcc', a=4.0) >>> supercell = bulk('Al', 'fcc', a=4.0, cubic=True).repeat(6) >>> path = [('X', 'G'), ('G', 'L'), ('L', 'W')] >>> coordinates = dict(X=[0.5, 0.5, 0], G=[0, 0, 0], ... L=[0.5, 0.5, 0.5], W=[0.5, 0.25, 0.75]) >>> qpoints = get_supercell_qpoints_along_path(path, coordinates, prim.cell, supercell.cell) """ from .lattice import Lattice lat = Lattice(primitive_cell, super_cell) for lbl in np.array(path).flatten(): if lbl not in coordinates: raise ValueError(f'Unknown point in path: {lbl}') # build the segments supercell_paths = [] for k, (l1, l2) in enumerate(path): q1 = np.array(coordinates[l1], dtype=float) q2 = np.array(coordinates[l2], dtype=float) dynasor_path, _ = lat.make_path(q1, q2) supercell_paths.append(dynasor_path) return supercell_paths
def find_on_line(start: NDArray, stop: NDArray, P: NDArray): """Find fractional distances between start and stop combatible with P A supercell is defined by P @ c = S for some repetition matrix P and we want to find fractions so that [start + f * (stop - start)] @ P = n Parameters ---------- start start of line in reduced supercell coordinates stop end of line in reduced supercell coordinates P repetion matrix defining the supercell """ if np.allclose(start, stop): return [Fraction(0, 1)] start = np.array([Fraction(s).limit_denominator() for s in start]) stop = np.array([Fraction(s).limit_denominator() for s in stop]) A = start @ P B = (stop - start) @ P fracs = None for a, b in zip(A, B): fs = solve_Diophantine(a, b) if fs is None: # "inf" solutions continue elif fs == []: # No solutions return [] fracs = set(fs) if fracs is None else fracs.intersection(fs) return sorted(fracs) def solve_Diophantine(a: Fraction, b: Fraction) -> List[Fraction]: """Solve n = a + xb for all n in Z and a,b in Q such that 0 <= x <= 1""" if b == 0: if a.denominator == 1: return None else: return [] if b < 0: right = np.ceil(a) left = np.floor(a + b) else: left = np.floor(a) right = np.ceil(a + b) ns = np.arange(left, right + 1) fracs = [Fraction(n - a, b) for n in ns] fracs = [f for f in fracs if 0 <= f <= 1] return fracs def get_commensurate_lattice_points(P: NDArray) -> NDArray: """Return commensurate points for a supercell defined by repetition matrix P Finds all n such that n = f P where f is between 0 and 1 Parameters ---------- P the repetion matrix relating the primitive and supercell Returns ------- lattice_points the commensurate lattice points """ inv_P_matrix = inv(P, as_fraction=True) assert np.all(P @ inv_P_matrix == np.eye(3)) n_max = np.where(P > 0, P, 0).sum(axis=0) + 1 n_min = np.where(P < 0, P, 0).sum(axis=0) ranges = [np.arange(*n) for n in zip(n_min, n_max)] lattice_points = [] for lp in itertools.product(*ranges): tmp = lp @ inv_P_matrix if np.all(tmp >= 0) and np.all(tmp < 1): lattice_points.append(lp) assert len(lattice_points) == len(set(lattice_points)) lattice_points = np.array(lattice_points) return lattice_points