Source code for dynasor.modes.project_modes
from typing import Optional
import numpy as np
from ase import Atoms
from numpy.typing import NDArray
from dynasor.logging_tools import logger
from dynasor.trajectory import Trajectory
from dynasor.tools.structures import get_displacements_from_u
[docs]
def project_modes(
traj: Trajectory,
modes: NDArray[float],
ideal_supercell: Atoms,
check_mic: Optional[bool] = True,
) -> tuple[NDArray[float], NDArray[float]]:
"""Projects an atomic trajectory onto set of phonon modes.
Parameters
----------
traj
Input trajectory.
modes
Modes to project on `(1, Nlambda, N, 3)` array where `Nm` is the number of modes
and `N` is the number of atoms in the supercell.
ideal_supercell
Ideal supercell used to find atomic displacements and should correspond to the ideal
structure. Be careful not to mess up the permutation.
check_mic
Whether to wrap the displacements or not, faster if no wrap.
Returns
-------
A tuple comprising `(Q,P)` where `Q` are the mode coordinates as a complex array
with dimension (length of traj, number of modes) and `P` are the mode momenta as a
complex array with dimension (length of traj, number of modes).
"""
# logger
logger.info('Running mode projection')
modes = np.array(modes)
original_mode_shape = modes.shape
if modes.shape[-2] != traj.n_atoms:
raise ValueError('Second dim in modes must be same len as number of atoms in trajectory')
if traj.n_atoms != len(ideal_supercell):
raise ValueError('ideal_supercell must contain the same number of atoms as the trajectory.')
modes = modes.reshape((-1, modes.shape[-2], 3))
Q_traj, P_traj = [], []
for it, frame in enumerate(traj):
logger.debug(f'Reading frame {it}')
# Make positions into displacements
x = frame.get_positions_as_array(traj._atomic_indices)
u = x - ideal_supercell.positions
# Calculate Q
u = get_displacements_from_u(u, ideal_supercell.cell, check_mic=check_mic)
Q = np.einsum('mnx,nx->m', modes, u)
# Calculate P
if frame.velocities_by_type is not None:
v = frame.get_velocities_as_array(traj._atomic_indices)
P = np.einsum('mna,na->m', modes.conj(), v)
else:
P = np.zeros_as(Q)
Q_traj.append(Q)
P_traj.append(P)
Q_traj = Q_traj.reshape((len(Q_traj), *original_mode_shape[:-2]))
P_traj = P_traj.reshape((len(P_traj), *original_mode_shape[:-2]))
return np.array(Q_traj), np.array(P_traj)