Weighting of dynamic structure factor with form factors
In this tutorial we focuss on post-processing the structure factors with neutron scattering lengths or X-ray form factors, as different features in the full dispersion are visible depending on which probe is used in a scattering experiment. We use solid (B2-ordered) NiAl to illustrate this.
Because we return to the same system used in the multi-component tutorial, we assume that the molecular dynamics trajectories have already been created beforehand with GPUMD with the UNEP model. See examples/NiAl-ordered-and-disordered/NiAl-runmd.py
for the runscript.
[2]:
import numpy as np
import matplotlib.pyplot as plt
from ase.build import bulk
from seekpath import get_path
from dynasor import compute_dynamic_structure_factors, Trajectory
from dynasor.qpoints import get_supercell_qpoints_along_path
from dynasor.units import radians_per_fs_to_meV as conversion_factor
Compute correlation functions
Here we set up the Trajectory,
[5]:
# Set up trajectory
traj = Trajectory(f'../NiAl-ordered-and-disordered/ordered/dump.xyz',
trajectory_format='extxyz',
atomic_indices='read_from_trajectory',
length_unit='Angstrom',
time_unit='fs',
frame_step=1,
frame_stop=None)
# Set up path through Brillouin zone
repeats = 24 # We simulated a 24x24x24 supercell
prim = bulk('Al', a=traj.cell[0][0]/repeats)
path_info = get_path((prim.cell, prim.get_scaled_positions(), prim.numbers))
point_coordinates = path_info['point_coords']
path = path_info['path']
q_segments = get_supercell_qpoints_along_path(
path, point_coordinates, prim.cell, traj.cell)
q_points = np.vstack(q_segments)
INFO 2025-03-27 10:51:49: Trajectory file: ../NiAl-ordered-and-disordered/ordered/dump.xyz
INFO 2025-03-27 10:51:49: Total number of particles: 27648
INFO 2025-03-27 10:51:49: Number of atom types: 2
INFO 2025-03-27 10:51:49: Number of atoms of type Al: 13824
INFO 2025-03-27 10:51:49: Number of atoms of type Ni: 13824
INFO 2025-03-27 10:51:49: Simulation cell (in Angstrom):
[[68.64 0. 0. ]
[ 0. 68.64 0. ]
[ 0. 0. 68.64]]
[6]:
# Compute correlation functions
delta_t = 5.0 # MD time step used (fs)
dump_every = 5 # How often the frames were dumped during MD
sample = compute_dynamic_structure_factors(traj, q_points,
dt=delta_t*dump_every,
window_size=2000,
window_step=100)
INFO 2025-03-27 10:51:57: Spacing between samples (frame_step): 1
INFO 2025-03-27 10:51:57: Time between consecutive frames in input trajectory (dt): 25.0 fs
INFO 2025-03-27 10:51:57: Time between consecutive frames used (dt * frame_step): 25.0 fs
INFO 2025-03-27 10:51:57: Time window size (dt * frame_step * window_size): 50000.0 fs
INFO 2025-03-27 10:51:57: Angular frequency resolution: dw = 0.000063 rad/fs = 0.041 meV
INFO 2025-03-27 10:51:57: Maximum angular frequency (dw * window_size): 0.125664 rad/fs = 82.713 meV
INFO 2025-03-27 10:51:57: Nyquist angular frequency (2pi / frame_step / dt / 2): 0.125664 rad/fs = 82.713 meV
INFO 2025-03-27 10:51:57: Number of q-points: 90
INFO 2025-03-27 10:53:00: Processing window 0 to 2000
INFO 2025-03-27 10:53:33: Processing window 1000 to 3000
INFO 2025-03-27 10:54:05: Processing window 2000 to 4000
INFO 2025-03-27 10:54:38: Processing window 3000 to 5000
INFO 2025-03-27 10:55:10: Processing window 4000 to 6000
INFO 2025-03-27 10:55:42: Processing window 5000 to 7000
INFO 2025-03-27 10:56:14: Processing window 6000 to 8000
INFO 2025-03-27 10:56:47: Processing window 7000 to 9000
INFO 2025-03-27 10:57:20: Processing window 8000 to 10000
INFO 2025-03-27 10:57:52: Processing window 9000 to 11000
INFO 2025-03-27 10:58:25: Processing window 10000 to 12000
INFO 2025-03-27 10:58:57: Processing window 11000 to 13000
INFO 2025-03-27 10:59:30: Processing window 12000 to 14000
INFO 2025-03-27 11:00:02: Processing window 13000 to 15000
INFO 2025-03-27 11:00:34: Processing window 14000 to 16000
INFO 2025-03-27 11:01:07: Processing window 15000 to 17000
INFO 2025-03-27 11:01:39: Processing window 16000 to 18000
INFO 2025-03-27 11:02:12: Processing window 17000 to 19000
INFO 2025-03-27 11:02:44: Processing window 18000 to 19999
INFO 2025-03-27 11:02:45: Processing window 19000 to 19999
[7]:
display(sample)
DynamicSample
Field | Content/Size |
---|---|
Atom types | ['Al', 'Ni'] |
Pairs | [('Al', 'Al'), ('Al', 'Ni'), ('Ni', 'Ni')] |
Particle counts | {'Al': 13824, 'Ni': 13824} |
Simulations cell | [[68.64 0. 0. ] [ 0. 68.64 0. ] [ 0. 0. 68.64]] |
q_points | (90, 3) |
time | (2001,) |
omega | (2001,) |
Fqt_coh_Al_Al | (90, 2001) |
Sqw_coh_Al_Al | (90, 2001) |
Fqt_coh_Al_Ni | (90, 2001) |
Sqw_coh_Al_Ni | (90, 2001) |
Fqt_coh_Ni_Ni | (90, 2001) |
Sqw_coh_Ni_Ni | (90, 2001) |
Fqt_coh | (90, 2001) |
Sqw_coh | (90, 2001) |
Weighting with neutron scattering lengths
To post-process the raw structure factor with weights of any kind, we need to first create a Weights
object, which we then use to compute the weighted sample using the get_weighted_sample
functionality.
[8]:
from dynasor.post_processing import Weights, get_weighted_sample
from dynasor.post_processing import NeutronScatteringLengths
Let’s begin by creating the Weights
object. We first illustrate how this is done in dynasor without bothering about the actual values of the scattering lengths, so we set the weights for both Ni and Al to 1. Instead of these dummy values, the weights could for example correspond to the charges, masses or, as we shall see below, scattering lengths or form factors, depending on the desired weighted correlation function.
[9]:
weights = Weights({'Ni': 1, 'Al': 1})
print(weights)
weights coherent:
Ni: 1
Al: 1
The weights we created like this are coherent weights. If we would have computed the incoherent structure factor in compute_dynamic_structure_dactors
above (which is done using include_incoherent=True
), we could have set the (generally different) incoherent scattering lengths as well, via a second dictionary:
[10]:
weights = Weights({'Ni': 1, 'Al': 1}, {'Ni': 1, 'Al': 1})
print(weights)
weights coherent:
Ni: 1
Al: 1
weights incoherent:
Ni: 1
Al: 1
Now we want to generate some real weights, that we want to use to perform the weighting of the raw structure factor. This can be done manually by creating the Weights
object as above, using your favorite table of neutron scattering lengths, but for convenience we provide tabulated values directly via NeutronScatteringLengths
, taken from this NIST database, which in turn have been taken from Table 1 of Neutron News 3, 26
(1992); doi: 10.1080/10448639208218770.
[11]:
neutron_weights = NeutronScatteringLengths(['Ni', 'Al'])
print(neutron_weights)
weights coherent:
Al: 3.449
Ni: 10.331863
weights incoherent:
Al: 0.065536
Ni: 0.0019421648999999998
[12]:
sample_neutron = get_weighted_sample(sample, neutron_weights)
[13]:
display(sample_neutron)
DynamicSample
Field | Content/Size |
---|---|
Atom types | ['Al', 'Ni'] |
Pairs | [('Al', 'Al'), ('Al', 'Ni'), ('Ni', 'Ni')] |
Particle counts | {'Al': 13824, 'Ni': 13824} |
Simulations cell | [[68.64 0. 0. ] [ 0. 68.64 0. ] [ 0. 0. 68.64]] |
omega | (2001,) |
q_points | (90, 3) |
time | (2001,) |
Fqt_coh_Al_Al | (90, 2001) |
Fqt_coh_Al_Ni | (90, 2001) |
Fqt_coh_Ni_Ni | (90, 2001) |
Fqt_coh | (90, 2001) |
Sqw_coh_Al_Al | (90, 2001) |
Sqw_coh_Al_Ni | (90, 2001) |
Sqw_coh_Ni_Ni | (90, 2001) |
Sqw_coh | (90, 2001) |
Visualize the neutron weighted structure factor
We visualize the effect of the weighting by studying slices of
[16]:
fig, axes = plt.subplots(figsize=(8, 8), ncols=2, nrows=4, dpi=140, sharex=True)
qids = [40, 60]
for qid in qids:
axes[0][0].plot(conversion_factor * sample.omega, sample.Sqw_coh[qid])
axes[1][0].plot(conversion_factor * sample.omega, sample.Sqw_coh_Al_Al[qid])
axes[2][0].plot(conversion_factor * sample.omega, sample.Sqw_coh_Ni_Ni[qid])
axes[3][0].plot(conversion_factor * sample.omega, sample.Sqw_coh_Al_Ni[qid])
axes[0][1].plot(conversion_factor * sample_neutron.omega, sample_neutron.Sqw_coh[qid])
axes[1][1].plot(conversion_factor * sample_neutron.omega, sample_neutron.Sqw_coh_Al_Al[qid])
axes[2][1].plot(conversion_factor * sample_neutron.omega, sample_neutron.Sqw_coh_Ni_Ni[qid])
axes[3][1].plot(conversion_factor * sample_neutron.omega, sample_neutron.Sqw_coh_Al_Ni[qid],
label=r'$\mathbf{q} =$' + np.array_str(sample.q_points[qid], precision=2, suppress_small=True)+' rad/Å')
ax = axes[0][0]
ax.set_ylabel(r'$S(\omega)$')
ax.set_title('Raw')
ax.set_xlim((0,60))
axes[1][0].set_ylabel(r'$S_{AlAl}(\omega)$')
axes[2][0].set_ylabel(r'$S_{NiNi}(\omega)$')
axes[3][0].set_ylabel(r'$S_{NiAl}(\omega)$')
axes[3][0].set_xlabel('Frequency (meV)', x=1.1)
axes[0][1].set_title('Neutron weighted')
axes[3][1].legend();
fig.subplots_adjust(hspace=0)
fig.align_ylabels()

From the figures above, we can see that in each
Weighting with X-ray form factors
Now, we will do the same thing, but with X-ray form factors instead. Just as for the neutron weights, we provide tabulated values for X-ray form factors via XRayFormFactors
. Here, there are two possible sources that can be specified, depending on the desired parametrization: source='waasmaier-1995'
(taken from table 1 from D. Waasmaier, A. Kirfel, Acta Crystallographica Section A 51, 416 (1995); doi: 10.1107/S0108767394013292) or
source='itc-2006'
(taken from Table 6.1.1.4. from International Tables for Crystallography, Volume C: Mathematical, physical, and chemical tables (2006)). If no source is specified, the default is waasmaier-1995
. This is a convenience function, but if you would like to use a different source for the X-ray form factors, recall that it is possible to manually create a Weights
object.
[17]:
from dynasor.post_processing import XRayFormFactors
[18]:
xray_weights = XRayFormFactors(['Ni', 'Al'])
print(xray_weights)
weights coherent:
Al: {'method': 'RHF', 'a1': 4.730796, 'b1': 3.620931, 'a2': 2.313951, 'b2': 43.051166, 'a3': 1.54198, 'b3': 0.09596, 'a4': 1.117564, 'b4': 100.932109, 'a5': 3.154754, 'b5': 1.555918, 'c': 0.139509}
Ni: {'method': 'RHF', 'a1': 13.521865, 'b1': 4.077277, 'a2': 6.947285, 'b2': 0.286763, 'a3': 3.866028, 'b3': 14.622634, 'a4': 2.1359, 'b4': 71.966078, 'a5': 4.284731, 'b5': 0.004437, 'c': -2.762697}
While the neutron scattering lengths are independent of XRayFormFactors
contains the parametrization, which allows for calculating the actual weight at the relevant
[20]:
q_plot = np.linspace(0,6)
xray_ff_Ni_plot = [xray_weights.get_weight_coh('Ni', q) for q in q_plot]
xray_ff_Al_plot = [xray_weights.get_weight_coh('Al', q) for q in q_plot]
fig, ax = plt.subplots(figsize=(5, 3), ncols=1, nrows=1, dpi=140)
ax.plot(q_plot, xray_ff_Al_plot, label='Al', color='C3')
ax.plot(q_plot, xray_ff_Ni_plot, '--', label='Ni', color='C5')
ax.set_xlabel(r'$|\mathbf{q}|$ (rad/Å)')
ax.set_ylabel(r'$f(|\mathbf{q}|)$')
ax.legend();

X-ray form factors roughly scale as the atomic number Z for different species, resulting in heavier elements being much more visible than lighter. This can be seen from the fact that Al (Z=13) and Ni (Z=28) differ by about a factor of two above.
When actually using the XRayFormFactors
to compute the weights, dynasor internally checks the
[21]:
sample_xray = get_weighted_sample(sample, xray_weights)
We can now compare the sample weighted with neutron scattering lengths to the sample weighted with the X-ray form factors. Again, we’ll look at some slices of
[23]:
fig, axes = plt.subplots(figsize=(12, 8), ncols=3, nrows=4, dpi=140, sharex=True)
qids = [60, 48]
for qid in qids:
axes[0][0].plot(conversion_factor * sample.omega, sample.Sqw_coh[qid])
axes[1][0].plot(conversion_factor * sample.omega, sample.Sqw_coh_Al_Al[qid])
axes[2][0].plot(conversion_factor * sample.omega, sample.Sqw_coh_Ni_Ni[qid])
axes[3][0].plot(conversion_factor * sample.omega, sample.Sqw_coh_Al_Ni[qid])
axes[0][1].plot(conversion_factor * sample_neutron.omega, sample_neutron.Sqw_coh[qid])
axes[1][1].plot(conversion_factor * sample_neutron.omega, sample_neutron.Sqw_coh_Al_Al[qid])
axes[2][1].plot(conversion_factor * sample_neutron.omega, sample_neutron.Sqw_coh_Ni_Ni[qid])
axes[3][1].plot(conversion_factor * sample_neutron.omega, sample_neutron.Sqw_coh_Al_Ni[qid])
axes[0][2].plot(conversion_factor * sample_xray.omega, sample_xray.Sqw_coh[qid])
axes[1][2].plot(conversion_factor * sample_xray.omega, sample_xray.Sqw_coh_Al_Al[qid])
axes[2][2].plot(conversion_factor * sample_xray.omega, sample_xray.Sqw_coh_Ni_Ni[qid])
axes[3][2].plot(conversion_factor * sample_xray.omega, sample_xray.Sqw_coh_Al_Ni[qid],
label=r'$\mathbf{q} =$' + np.array_str(sample.q_points[qid], precision=2, suppress_small=True)+' rad/Å')
ax = axes[0][0]
ax.set_ylabel(r'$S(\omega)$')
ax.set_title('Raw')
ax.set_xlim((0,60))
axes[1][0].set_ylabel(r'$S_{AlAl}(\omega)$')
axes[2][0].set_ylabel(r'$S_{NiNi}(\omega)$')
axes[3][0].set_ylabel(r'$S_{NiAl}(\omega)$')
axes[3][1].set_xlabel('Frequency (meV)')
axes[0][1].set_title('Neutron weighted')
axes[0][2].set_title('X-ray weighted')
axes[3][2].legend();
fig.subplots_adjust(hspace=0)

The first thing to note is that the intensities of the total structure factor (first row) vary depending on the probe, which reflects the fact that the interaction strength between a probe and an atomic species varies depending on the probe.
Furthermore, it is possible to see the effect of the